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Abstract

An important aspect of microarray studies involves the prediction of patient survival based on
their gene expression levels. To cope with the high dimensionality of the microarray gene expres-
sion data, it is customary to first reduce the dimension of the gene expression data via dimension
reduction methods, and then use the Cox proportional hazards model to predict patient survival.
In this paper, we propose a variant of Partial Least Squares, denoted as Rank-based Modified Par-
tial Least Squares (RMPLS), that is insensitive to outlying values of both the response and the
gene expressions. We assess the performance of RMPLS and several dimension reduction meth-
ods using a simulation model for gene expression data with a censored response. In particular,
Principal Component Analysis (PCA), modified Partial Least Squares (MPLS), RMPLS, Sliced
Inverse Regression (SIR), Correlation Principal Component Regression (CPCR), Supervised Prin-
cipal Component Regression (SPCR) and Univariate Selection (UNIV) are compared in terms of
mean squared error of the estimated survival function and the estimated coefficients of the co-
variates, and in terms of the bias of the estimated survival function. It turns out that RMPLS
outperforms all other methods in terms of the mean squared error and the bias of the survival
function in the presence of outliers in the response. In addition, RMPLS is comparable to MPLS
in the absence of outliers. In this setting, both RMPLS and MPLS outperform all other methods
considered in this study in terms of mean squared error and bias of the estimated survival function.
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Introduction

Microarray studies allow researchers to quickly and efficiently perform simultane-
ous analyses of thousands of genes in a single experiment to gain insight into gene
function. Much of the interest on microarray data analysis derives from the po-
tential of identifying the genes that relate to biological processes, the classification
of tumor types and tumor stages based on gene expression patterns, and the study
of gene interactions. However, because microarray data often include survival in-
formation on patients, it is important to analyze patient survival times (response)
in terms of their corresponding gene expression levels (predictors). This paper is
concerned with dimension reduction methodologies when modeling survival times
in the presence of censoring, taking into account the microarray data information.

The major challenge in using microarray data in survival analysis is its large di-
mensionality, typically in the range of ten to thirty thousand genes, while the num-
ber of cases is usually orders of magnitude smaller. Existing statistical methods
such as the commonly used linear regression model and survival analysis require
less predictors than cases. Furthermore, gene expression levels are often highly
correlated, which makes the analysis even more difficult. Several authors have pro-
posed penalized partial likelihood approaches for the Cox Proportional Hazards
(PH) model (Cox (1972)) to cope with the high dimensionality of the gene ex-
pression data. Li and Luan (2003) used kernel transformations of the Cox partial
likelihood in the framework of a penalization method. Gui and Li (2005a) pro-
posed using a threshold gradient descent minimization of the Cox partial likelihood
to estimate the regression parameters. Gui and Li (2005b) also proposed a penal-
ized method for the Cox regression based on the Least Angle Regression (LARS)
algorithm of Efron (2004). However, Engler and Li (2007) pointed out that there
are several drawbacks to these methods. For example, the approach of Li and Luan
(2003) does not provide a recipe for the selection of the genes to be included in
the prediction of the survival function. In the approach proposed by Gui and Li
(2005a), the number of selected genes is sensitive to changes in the threshold pa-
rameter. When the penalty function is not strictly convex, as in the case of LARS,
and given that the predictors are highly correlated, Gui and Li’s approach (2005b)
often identifies only one of the predictors and ignores the others.

Another approach to deal with the high dimensionality of gene expression levels
is to employ a two-stage procedure. In stage 1, we reduce the dimension of the
microarray data matrix fromN x p to N x K whereK < N using dimension re-
duction methods, and then in stage 2, we apply the regression model in the reduced
subspace. Several papers in the literature provide comparison studies among the
different dimension reduction methods employing the two-stage procedure. Bura
and Pfeiffer (2003) concluded that Sliced Average Variance Estimation (SAVE)
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is better than Sliced Inverse Regression (SIR) in terms of classification accuracy
of tumor classes. Boulesteix (2004) combined Partial Least Squares (PLS) with
Linear Discriminant Analysis (LDA). The approach outperforms several classifi-
cation methods such as Nearest Neighbor (NN), Prediction Analysis of Microar-
ray (PAM) and Support Vector Machines (SVM). Nguyen and Rocke (2004) and
Nguyen (2005) concluded that PLS and modified versions of PLS (to incorporate
censoring) outperfom Principal Component Analysis (PCA) in terms of percentage
of correct classification, and mean squared error of the estimated survival function,
where the survival is evaluated using the average of the covariates in the Cox model.
According to Dai et al (2006), PLS and Sliced Inversed Regression (SIR) outper-
form PCA in terms of classification error rates. In Bair et al. (2006), Supervised
Principal Component Regression (SPCR) outperforms PCA and PLS in terms of
classification error of tumor subtypes. Bolvestad et al (2007) stated that PCA per-
formed slightly better than SPCR in terms of the log-rank test, prognostic index
and the deviance in the Cox model. In Zhao and Sun (2007), Correlation Principal
Component Regression (CPCR) is as competitive as modified versions of PLS in
terms of root mean squared error of prediction of martingale residuals in the Cox
model, and in terms of classification accuracy.

However, the performance of the different dimension reduction methods seems
to be data-specific. In other words, methodA may outperform methodB for one
dataset, but the opposite may be observed for another dataset. When the number of
genes far exceeds the number of cases, no clear-cut winner among the dimension
reduction methods can be deduced either in the context of classification or predic-
tion. Furthermore, there is a lack of a large simulation study that compares the
different dimension reduction methods, in the presence of outliers, in terms of the
mean squared error of theβ′s, which are the coefficients of the genes in the Cox PH
model, and the mean squared error and bias of the estimated survival function eval-
uated using the covariates corresponding to the individuals in the Cox regression
model.

In this paper, we assess the performance of several dimension reduction methods
through a simulation study using the Cox Proportional Hazards regression model at
the second stage in the presence of outliers. The competing methods are: Princi-
pal Component Analysis (PCA), Modified Partial Least Squares (MPLS) of Nguyen
and Rocke (2004), Rank-based Modified Partial Least Squares (RMPLS) (described
in section 1), Sliced Inverse Regression (SIR), Univariate Selection (UNIV), Su-
pervised Principal Component Regression (SPCR), and Correlation Principal Com-
ponent Regression (CPCR). We consider the following measures to compare the
methods:

1. MSE(β): mean squared error of the weights placed on the covariates,
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2. ave(d2): mean squared error of the estimated survival function evaluated us-
ing the average of the covariates.

3. ave(d2.ind): mean squared error of the estimated survival function evaluated
using the covariates corresponding to the individuals.

4. ave(bias): average bias of the estimated survival function evaluated using the
average of the covariates.

5. ave(bias.ind): average bias of the estimated survival function evaluated us-
ing the covariates corresponding to the individuals.

Both measures of bias,ave(bias) andave(bias.ind), are calculated at the deciles
of the true survival function.

It turns out that in the presence of outliers in the response, RMPLS outperforms
all other methods, including MPLS, in terms ofave(d2) andave(d2.ind). Also,
in terms ofave(bias) andave(bias.ind), RMPLS outperforms all other methods
for small to medium deciles. Furthermore, RMPLS is comparable to MPLS in the
absence of outliers in the response for all five measures. In this setting, both RMPLS
and MPLS outperform other methods in terms ofave(d2) andave(d2.ind), and in
terms ofave(bias) andave(bias.ind) for small to medium deciles. In terms of
MSE(β), PCA, MPLS, RMPLS and SPCR perform relatively the same in both the
presence and absence of outliers, and these methods outperform CPCR and UNIV.

The paper is organized as follows. We describe the Cox proportional hazards
model and the dimension reduction methods in section1. We present a variant of
Partial Least Squares in this section, which we refer to as Rank-based Modified
Partial Least Squares. The method is insensitive to outlying values in both the
predictors and response, and also incorporates the censoring information. In section
2, we describe the simulation procedure for the gene expression values, and the
survival and censoring times. In section3, we provide simulation results for two
scenarios: 1) when the number of components,K, is fixed across the methods, and
2) whenK is selected using cross-validation for each method. Also, the assessment
of the performance of the methods on two real datasets are given in section3. We
provide some conclusions and discussion in section4.

1 Dimension Reduction Methods

Dimension reduction seeks to reduce the size of the microarray dataset, often
in the order of thousands, while trying to retain most of the relevant information
contained in the original dataset, according to some criteria. This is typically done
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by creating a set of orthogonal linear combinations of the gene expression levels and
then selecting a subset of these based on some criteria associated with the ability
of the elements in this subset to predict the response. A notable example is Partial
Least Squares (PLS) which will be described in this section along with several other
dimension reduction methods. First, we introduce some notation and describe the
Cox PH model.

Notation

DefineX to be theN x p matrix of centered gene expression values (i.e., thep
columns ofX are centered by subtracting the column means from the column val-
ues), whereN is the number of individuals (patients), andp is the number of genes
with N � p. Let y be theN x 1 vector of true survival times,c beN x 1 vector of
right-censoring times, and lety andc be independent. What we actually observe is
Ti = min(yi, ci), and censoring indicatorsδi = I(yi ≤ ci) for i = 1, . . . , N (δi = 1
if the true survival time is observed, andδi = 0 if censoring occurs).

Cox Proportional Hazards (PH) Model

One popular regression model that takes into account the censored response is the
Cox Proportional Hazards (PH) model. The Cox model is given as:

h(t, zi; β) = h0(t)e
z′iβ (1)

whereh0(t) denotes an unspecified baseline hazard function, andzi is the vector
of covariates corresponding to theith individual, andβ′s are the regression coeffi-
cients. Here, the parametersβ can be estimated by maximizing the partial likeli-
hood, which is given in the expression below (Klein and Moeschberger (2003)):

L(β) =
D∏

i=1

ez′
(i)

β∑
j∈R(ti)

ez′jβ
, (2)

whereD is the number of deaths,t1 < t2 < · · · < tD are the ordered death times,
z(i) are the covariates corresponding to the individual with survival timeti, and the
risk setR(ti) is the set of individuals who are still under study at the time just prior
to ti. The partial likelihood in Eq. (2) does not involve the baseline hazardh0(.),
and thus,h0(.) can be left unspecified in the estimation ofβ. Eq. (1) implies the
proportionality of the hazard rates assumption, which states that given two individ-
uals with different covariate values, the ratio of the hazard functions for these two
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individuals does not depend on time. Since the hazard function characterizes the
survival function, the PH model can be rewritten in terms of survival function as:

S(t, zi; β) = S0(t)
ez′iβ

(3)

whereS0(t) denotes the baseline survival function, which can be estimated by the
Kaplan-Meier product limit estimator (Kaplan (1958)) or the Nelson-Aalen estima-
tor (Aalen (1978)). We use the Nelson-Aalen estimator to estimate the baseline
survival function in this paper.

When the number of predictorsp is larger than the number of individualsN ,
the parameter estimates obtained from the Cox partial likelihood Eq. (2) are non-
unique, unstable and have large variances. To cope with the high dimensionality
of the gene expression data, we first use dimension reduction methods to reduce
the dimension of the original data fromp to K whereK < N , and then apply the
Cox regression model in the reduced subspace. In other words, the dimension of the
microarray data matrixX is first reduced fromN x p to N x K whereK < N using
dimension reduction techniques in the first stage. We denote theN x K reduced
data matrix byX̃. In the second stage, the reduced data matrixX̃ is used in the
multivariate Cox PH regression model.

We now describe the dimension reduction methods.

1.1 Principal Component Analysis (PCA)

PCA is a dimension reduction technique that sequentially constructs orthogonal
components by maximizing the variance of the linear combinations of the original
predictors. Mathematically, the sequence of the weight vectors is obtained as,

wk = arg max
w′w=1

Var(Xw) = arg max
w′w=1

(N − 1)−1w′X ′Xw (4)

subject to the orthogonal constraintsw′
kX

′Xwj = 0 for all 1 ≤ j < k, where
k = 1, . . . ,m, andm = min(N, p). Thekth Principal Component (PC) is defined
asx̃k = Xwk. The constraintsw′

kX
′Xwj = 0 ensure that the PCs are orthogonal.

One approach to derive the Principal Components (PCs) is through the eigen-
value decomposition of the sample covariance matrix, which equalsS = 1

N−1
X ′X

becauseX is centered. SinceS is symmetric, it can be diagonalized by the orthog-
onal matrix of its eigenvectors,

S = V ∆V ′ (5)

where theNxN matrix∆ = diag(λ1 ≥ · · · ≥ λN ) and(λk)
N
k=1 represent the eigen-

values ofS in descending order, and the columns of thepxN orthogonal matrix
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V = (v1, . . . , vN) are the corresponding eigenvectors that provide the weights
(loadings) for the linear combinations. The PCs arex̃k = Xvk, wherevk corre-
spond to the columns ofV . Since theλ’s are in descending order, the PCs are also
ordered in terms of the amount of variation in the original data they account for.
In many cases, the first few PCs explain most of the variation in the original data,
and thus, we can ignore the rest of the PCs without losing much of the information.
Also, because the weight vectorsw are constructed so that they are unit vectors,
w′w = 1, the proportion of the variation explained by thekth PC isλk/p, and the
cumulative proportion for the firstK PCs is

∑K
k=1 λk/p.

1.2 Modified Partial Least Squares (MPLS)

The Partial Least Squares (PLS) method was first developed by Wold (1966) in
econometrics, and later became popular in chemometrics and sensory evaluation
(see Geladi (1992)). The objective criterion in PLS is to maximize the covariance
between the linear combination of the original predictor variablesX and the re-
sponse variabley. Thus, the weightswk are constructed sequentially as,

wk = arg max
w′w=1

Cov(Xw, y) = arg max
w′w=1

(N − 1)−1w′X ′y (6)

subject to the constraintsw′
kX

′Xwj = 0 for all 1 ≤ j < k, wherek = 1, . . . ,m
andm = min(N, p), as in PCA. Unlike PCA which ignores the responsey com-
pletely in constructing the components, PLS incorporates both the response and the
predictors. Another objective function of PLS is:

wk = arg max
w′w=1

Cor2(Xw, y)V ar(Xw)

= arg max
w′w=1

Cov2(Xw, y) = arg max
w′w=1

(N − 1)−1w′X ′yy′Xw (7)

subject to the constraintsw′
kX

′Xwj = 0 for all 1 ≤ j < k. In the literature, several
authors such as Boulesteix and Strimmer (2006) and Rosipal and Kramer (2006)
adopt objective function (7) while others such as Nguyen and Rocke (2004) and
Nguyen (2005) adopt objective function (6) for PLS. It turns out that the solutions
to the two objective criteria (6) and (7) are the same up to a proportionality constant
(see De Jong and Phatak (1996) for details).

Several authors have discussed the use of PLS to analyze microarray data (Datta
(2001); Nguyen and Rocke (2002, 2004); Nguyen (2005)). Frank and Friedman
(1993) pointed out that the statistical properties of PLS are largely unknown despite
its numerous applications. For example, there is a lack of theoretical understand-
ing regarding the characteristics of PLS that delineate the conditions under which
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the method performs well. Naik and Tsai (2000) noted that PLS performs well
in the presence of collinearity in single-index models, especially in the case when
the covariates are highly correlated. They also showed that the estimates obtained
from PLS are consistent up to a scaling constant. A good review of the different
algorithms for PLS is given in Boulesteix and Strimmer (2006). We adopt the or-
thogonal scores algorithm of Marten and Naes (1989) for the simulations in this
paper. The algorithm is given below:

1. Thep columns ofX and vectory are standardized (mean0 and variance1).

2. Let w̃ = X ′y; define the weight vectorw = w̃√
w̃′w̃

.

3. Let t̃ = Xw; define the scores vectort = t̃
t̃′ t̃

.

4. Findq1 = y′t, andq2 = X ′t.

5. DeflateX andy: X = X − tq′2 andy = y − tq′1.

The algorithm is repeated to obtaink weight vectors sequentially.
However, response (survival) outcomes are usually right-censored, and hence,

the construction of PLS components, as given above, does not consider censor-
ing information, which induces bias in the estimates. Improvements to this ap-
proach were proposed by combining the construction of PLS components and Cox
regression model, and hence, incorporating censoring into the construction of PLS
components. Park et al (2002) reformulated the Cox model as a standard Poisson
regression and derived the PLS components from the formulation of PLS for the
generalized linear models. However, Gui and Li (2004) pointed out that Park’s
algorithm may fail to converge when the number of covariates is large. They pro-
posed the Partial Cox Regression (PCR), which involves the construction of pre-
dictive components by repeated least square fitting of residuals and Cox regression
fitting. These components can then be used in the Cox model. We describe one
elegant solution proposed by Nguyen and Rocke (2004) that includes the censoring
information, denoted by the Modified Partial Least Squares (MPLS).

Nguyen and Rocke (2004) showed that the PLS weights in Eq. (6) can be ex-
pressed as,

wk =
N∑

i=1

θikvi (8)

wherevi are theith eigenvector ofX ′X. Closed form expressions for the constants
θik are given by Nguyen and Rocke (2004), and they depend on the responsey only
through the dot productai = u′iy, whereui are the eigenvectors ofXX ′. The dot
productai is the estimated slope coefficient of the simple linear regression ofy onui
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whenX is centered. Thus, Nguyen and Rocke proposed to replace this dot product
ai by the slope coefficient obtained from the univariate Cox PH regression ofy on
ui. In the orthogonal scores algorithm used in this work, theq1’s are precisely the
a’s.

1.3 Rank-based Modified Partial Least Squares (RMPLS)

The optimization criterion of PLS maximizes the covariance of a linear combina-
tion of the predictorsX and the responsey. However, the usual covariance or
correlation measure is heavily influenced by outliers, and thus, the PLS method is
sensitive to outliers. We propose to replace the usual Pearson correlation by the
Spearman rank correlation because the Spearman correlation is insensitive to out-
lying values of bothX andy. In the orthogonal scores algorithm given in section
1.2 with standardizedX andy, we make the following changes. In step 2 of the
algorithm, sinceCor(X, y) = X ′y, we replaceCor(X, y) with CorR(X, y) where
CorR(X, y) denotes the correlation of the ranks between the columns of the matrix
X and the vectory. In step 4,q2 can be expressed asq2 = X ′t = X′Xw

t̃′ t̃
. Since

Cor(X) = X ′X, we make the changeq2 = CorR(X,X)w

t̃′ t̃
. In step 5, we update

RX andRy instead ofX andy. To incorporate the censoring information, we use
MPLS with these changes, and denote the new approach Rank-based Modified Par-
tial Least Squares (RMPLS).

Theoretical Derivation: We present the weightswk in RMPLS as solutions to
an optimization problem. Here, we ignore the censoring for simplicity (censoring is
incorporated using the procedure of Nguyen and Rocke (2004)). The criterion of the
usual PLS is to to find the weight vector,w, such thatw maximizes the covariance
of Xw andy. An equivalent statement in terms of the ranks is to find the weight
vector,w, such thatw maximizes the covariance ofRXw andRy, whereRz denotes
the ranks of the vectorz. RMPLS explores a different optimization problem. The
columns of the data matrixX and the responsey are first converted to their ranks
and then centered, denoted byRX andRy respectively. We search for the weight
vectorw such thatw maximizes the covariance ofRXw andRy. The first weight
vector,w1, is obtained from the following maximization criterion.

w1 = arg max
w′w=1

w′ CovR(X, y) = arg max
w′w=1

(N − 1)−1w′R′
XRy (9)

whereCovR is the covariance of the ranks,RX is the matrix of the ranks ofX (i.e.,
columns ofRX correspond to the ranks of the columns ofX), andRy is the vector
of the ranks ofy. Here,RX andRy are centered.

8

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 4

http://www.bepress.com/sagmb/vol8/iss1/art4
DOI: 10.2202/1544-6115.1395



We state the following theorem (without proof) from Mardia (2003), which helps
in finding a closed form solution forw1.

Theorem 1: Let a, x be vectors and letB be a symmetric matrix withB > 0.
The maximum ofa′x subject tox′Bx = 1, is

(a′B−1a)1/2. (10)

Further,

max
x

(a′x)2

x′Bx
= a′B−1a (11)

where the maximum is attained atx = B−1a
(a′B−1a)1/2 .

Using Theorem 1 withB = I, x = w, anda = R′
XRy, we obtain

w1 =
R′

XRy

||R′
XRy||

(12)

The first component ist1 = Xw1. The second weight vector,w2, is obtained from
the following maximization criterion,

w2 = arg max
w′w=1

w′ CovR(X, y) = arg max
w′w=1

(N − 1)−1w′R′
XRy (13)

subject to the constraintw′X ′t1 = 0.

Let SX = X ′X, andSRX
= R′

XRX . We can deduce that

w2 ∝
(

I − w′
1SXw1

w′
1SRX

SXw1

SRX

)
w1. (14)

whereI is ap x p identity matrix, and w′
1SXw1

w′
1SRX

SXw1
is a constant. We should note that

w2X
′t1 = w2SXw1 = w′

1SXw1 −
w′

1SXw1

w′
1SRX

SXw1

w′
1SRX

SXw1

= w′
1SXw1 − w′

1SXw1 = 0

In general, thekth weight vector is obtained from the following maximization cri-
terion,

wk = arg max
w′w=1

w′ CovR(X, y) = arg max
w′w=1

(N − 1)−1w′R′
XRy (15)
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subject tow′
kSXwj = 0, for j = 1, . . . , k − 1.

It turns out thatwk, k ≥ 2, takes the form

wk ∝ Pk−1w1 (16)

where
Pk−1 = I − ζ1SRX

− ζ2S
2
RX
− · · · − ζk−1S

k−1
RX

(17)

whereSj
RX

= SRX
SRX

. . . SRX︸ ︷︷ ︸
j times

, andζ1, ζ2, . . . , ζk−1 can be obtained by solving the

following system of linear equations forζ ’s

w′
1Pk−1SXw1 = 0

w′
1Pk−1SXw2 = 0

...

w′
1Pk−1SXwk−1 = 0. (18)

1.4 Sliced Inverse Regression (SIR)

When the number of covariatesp is much larger than the number of casesN , the for-
ward regression functionE(y|X) is difficult to estimate. The idea of Sliced Inverse
Regression, proposed by Li (1991), is to focus instead on the inverse regression
functionE(X|y), which consists ofp one-dimensional regressions, and is easier to
estimate. In practice, SIR is implemented by replacingy by its discrete version,
denoted bỹy, which is constructed by slicing the range ofy ontoH intervals. The
slicing can be done by the quantiles ofy, so that the number of cases in each slice
is not too small. SIR then obtains the projection vectorsvk through the eigenvalue
decomposition ofΣX|ỹ = Cov(E(X|ỹ)) with respect toΣx = cov(X),

ΣX|ỹvk = λkΣxvk (19)

subject to the constraintsvkΣxvk = 1. Here,λk is thekth eigenvalue ofΣX|ỹ in
descending order, and thevk is the corresponding eigenvector. Here, for each dis-
cretized value of̃y, E(X|ỹ) denotes the average of the cases ofX that correspond
to that discretized value of̃y.

The SIR components̃xk = Xvk, for k = 1, . . . , K (K ≤ min(H − 1, N, p)), are
linear combinations of thep original predictors weighted by the projection vectors
vk, where thevk’s are derived so that the first few represent directions with maxi-
mum variability between the SIR components and the response variable (Dai et al
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2006). We should note that SIR does not require any of the usual assumptions on
the distribution ofy|X, so any model can be applied in the analysis. Similar to PLS,
SIR incorporates the response (survival times) in conjunction with gene expression
data. Details on SIR can be found in Li (1991), Li et al (1999), Li and Li (2004),
Dai et al (2006).

Since SIR is designed for uncensored response, it cannot be applied directly to
censored survival data. Li et al (1999) proposed adouble slicing procedure to
bypass this censoring problem by first partitioning the responsey into a censored
and an uncensored part, then performing the slicing within those two parts, and
finally combining the two parts for the eigenvalue decomposition. Li and Li (2004)
pointed out that the implementation of SIR requires the covariance matrixΣx to be
non-singular, which is not the case whenp is much larger thanN . To resolve this
issue, they propose to first reduce the dimension ofp to K, whereK < N � p, via
a dimension reduction method such as PCA or PLS, and then apply SIR to theseK
components. We adopt this approach in our simulation study.

1.5 Univariate Selection (UNIV)

Bovelstad et al (2007) first fits a univariate regression model for each geneg, and
then tests the null hypothesisβg = 0 vs. the alternativeβg 6= 0 using the score
test. Since the response is censored, we use the Cox model for regression. We
arrange the genes according to increasingp-values after testing each gene one-by-
one. We then pick out the top-rankedK genes, according top-values, to include in
the multivariate Cox regression model. In this paper, we consider two scenarios for
the selection ofK: 1) we fixK to be the same for the different dimension reduction
methods, and 2) we allow adaptive tuning forK by cross-validation (details given in
section 3). Unlike PCA, UNIV ignores the correlation among the genes, which may
cause many of the selected genes to have insignificantp-values in the multivariate
Cox model as pointed out by Van Wieringen et al (2008).

1.6 Supervised Principal Component Regression (SPCR)

One possible drawback of PCA is that the method completely ignores patient sur-
vival. Bair and Tibshirani (2004, 2006) proposed the supervised principal compo-
nent regression (SPCR), which employs univariate selection (UNIV) to pick out a
subset of original gene expression data that is correlated with patient survival, and
then apply PCA to the reduced gene expression data. One criterion to pick out the
subset of genes is to obtain theλSPCR percent of the top ranked genes according to
thep-values from UNIV. In this paper, we chooseλ = 20% of the top ranked genes.
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1.7 Correlation Principal Component Regression (CPCR)

Sun (1995) proposed a variant of SPCR, called Correlation Principal Component
Regression (CPCR). The first step of CPCR is to do Principal Component Analysis
(PCA) on the gene expression data matrixX, but retaining all the principal com-
ponents. In other words,K1 = min(p, N) principal components (PC) are first
obtained. In the context of regression, the second step to CPCR involves regressing
the response variabley on the firstK < K1 PC’s, such that theseK PC’s have
the highest correlations withy (Sun (1995)). In this paper, we selectK using two
strategies: 1) we fixK to be the same for the different dimension reduction meth-
ods, and 2) we use cross-validation to selectK based on the minimization of the
squared error of the estimated survival function. Similar to PLS, CPCR takes into
account the response variable, while PCA does not.

Since the response is censored, Zhao and Sun (2007) proposed to replace the
correlation between the censored response and the PC’s by thep-value obtained
from the univariate Cox regression model of the response and each of the PC’s.
Thus, in the second step of CPCR, we use UNIV in a univariate Cox model to pick
out the top-rankedK PC’s.

2 Simulation Procedure

As mentioned earlier, to cope with the high dimensionality of the microarray gene
expression data, we first reduce the dimension of the gene expression fromp to
K � N � p via dimension reduction methods, and then apply the regression
model in the reduced subspace. We follow the simulation setup from Nguyen
(2005), which is described in detail in the next subsection. We investigate the per-
formance of several dimension reduction methods in the Cox regression model:
PCA, MPLS, RMPLS, SIR, UNIV, SPCR, and CPCR. The results of the simula-
tions are provided in section 3. We now describe the simulation setup.

2.1 Simulation Setup

The simulation procedure described by Nguyen (2005) comprises two main parts:
1) generating gene expression values, and 2) generating the survival and censoring
times. We describe these two parts in detail.

2.1.1 Generating gene expression values

Let xij be theijth entry of the gene expression data matrixX, wherei = 1, . . . , N
denote the indices for the cases, andj = 1, . . . , p denote the indices for the gene.
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We generatex∗ij =
∑d

k=1 rkiτkj + εij, for k = 1, . . . , d, whereτkj
iid∼ N(µτ , σ

2
τ ) are

the component values, andεij ∼ N(µε, σ
2
ε ) are the noise. Theijth entry of the gene

expression data matrix isxij = exp(x∗ij). Thus, the gene expressions are generated
as a linear combination of thed independent underlying components and an error
component. It is clear thatxij ∼ LN(ai, b

2
i ), with parametersai = µτ

∑d
k=1 rki,

andb2
i = σ2

τ

∑d
k=1 r2

ki + σ2
ε . As pointed out by Nguyen (2005), the gene expression

data matrix is generated so that the firstK principal components explain a specified
proportion of variability in the data matrix, and the variation explained (TVPE) by
the firstK principal components is controlled in the simulation byγ = σε/στ . In
this simulation setup, we fixd = 6, µε = 0, µτ = 5/d, στ = 1, and varyσε so
as to capture the desired TVPE, namely40%, 50%, 60% and70%. For each TVPE
and eachp ∈ 100, 300, 500, 800, 1000, 1200, 1400, 1600, we generate5000 datasets.
Since we want to considerp � N , we fix the sample sizeN = 50. Sincer is a set
of fixed constants, it is convenient to selectrki ∼ Unif(−0.2, 0.2), and we use the
same set ofr for all the simulations.

Since the true regression parameters,βj with j = 1, . . . , p, are fixed, it is conve-
nient to generate them from anN(0, σ2

π) distribution. In these simulations, we fix
σπ = 0.2 for all p’s.

2.1.2 Generating survival and censoring times

Once we generate the gene expression data matrixX, we generate the survival
time of theith individual, yi, independently from the censoring time,ci, with (i =
1, . . . , N ). In these simulations, we consider an exponential baseline distribution for
both the survival and censoring times, with densityf0(t) = λe−λt. In other words,
y0i ∼ Exp(λy), andc0i ∼ Exp(λc), wherey0i andc0i denote the baseline survival
and censoring time, respectively, for theith individual. The survival and censoring
time for theith individual areyi = y0ie

−X′
iβ andci = c0ie

−X′
iβ, respectively. Here,

Xi are the covariates corresponding to theith individual.
The observed data for theith individual isTi = min(yi, ci), and the correspond-

ing censoring indicator isδi = I(yi < ci), with δi = 1 for death event andδi = 0
for censored response. The true censoring rate isP [yi > ci] = λc

λy+λc
under the

exponential baseline survival. In the simulation setup, we fixλy = 2, and varyλz

to obtain the desired amount of censoring of1/3 and1/2. Since both the true and
censoring times for theith individual depend onX ′

iβ, fixing σπ = 0.2 will lead
to large absolute values ofX ′

iβ for largep, and thus, the survival times will have
outliers for large values ofp.
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3 Simulation Results

We consider two scenarios for the selection ofK for the different methods: 1)K is
fixed across the different methods, and 2)K is selected based on the minimization
of the cross-validation squared error of the estimated survival function for each
method. Sincep � N in real microarray data, we choose a sample size ofN = 50,
and consider the number of genes,p = 100, 300, 500, 800, 1000, 1200, 1400,
and1600. We generate5000 data sets, and for each dataset, we apply dimension
reduction methods in stage 1, and use the data in the reduced subspace to apply the
Cox PH model in stage 2. We consider several dimension reduction methods: PCA,
MPLS, RMPLS, SIR, UNIV, SPCR, and CPCR.

For scenario 1, we fixK = 3 for all the methods. Since the data matrix is gen-
erated so that the firstK PCs explain a specified proportion of predictor variability,
we set the proportion of variability explained to be40%, 50%, 60% and70%. We
should note that for SIR, we first reduce the dimension of the data matrix fromp
to K = 3 via PCA or MPLS, then apply SIR to the reduced subspace and obtain
KSIR = 2 SIR components. For Univariate Selection (UNIV), we fit a univariate
Cox model for each gene, then obtainK = 3 most important genes according to
the rank of thep -values of the coefficient in the univariate Cox model. For Su-
pervised Principal Component Regression (SPCR), we first selectλSPCR = 20%
of the genes by UNIV, then apply PCA to theλSPCR genes to obtain theK = 3
SPCR components. For Correlation Principal Component Regression (CPCR), we
first apply PCA to the original data matrix to obtainλCPCR = min(N, p) PCs, then
apply UNIV to the resulted PCs to obtain theK = 3 CPCR components.

For scenario 2, we allow adaptive tuning for each method by use of cross- valida-
tion (CV). We exclude SIR from the analysis because the method does not improve
PCA or MPLS. Also, for SPCR, we fixλSPCR = 20%, and apply cross-validation
to selectK.

As mentioned in section 2, the survival and censoring times are generated so that
for largep, i.e. p ≥ 300, some outliers are generated. Figure 1 shows, for one
simulation in the casep = 100, the observed survival timesTi = min(yi, ci) do not
have outliers. However, forp = 1000, theTi have outliers. In these simulations, we
want to investigate the effect of outliers in the response on the different dimension
reduction methods.

3.1 Scenario 1:K is Fixed

We assess the performance of the different methods using the following measures:
1) MSE(β), 2) ave(d2), 3) ave(d2.ind), 4) ave(bias), and 5)ave(bias.ind). The
first, third, fourth and fifth measures have not been investigated in the literature, and
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Figure 1: 1/3 censoring withp = 100 and p = 1000 for one simulation run.
The observed survival timesTi = min(yi, ci) are plotted againstX ′

iβ, wherei =
1, . . . , N .
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the second measure has been investigated by Nguyen (2005). We now define these
measures.

The first measure,MSE(β), is defined in terms of the weights placed on the
genes,

MSE(β) =
1

s

s∑
i=1

p∑
j=1

(βj − β̂ij)
2 (20)

wherei = 1, . . . , s indicates theith simulation, andj = 1, . . . , p indicates thejth

gene. For theith simulation, thep x 1 vectorβ̂ is obtained bŷβ = Wβ̂Cox whereW
is the vector of weights obtained from the dimension reduction step (such as PCA,
PLS,. . . ), andβ̂Cox are the parameter estimates obtained from the Cox model.

Figure 2 compares theMSE(β) for PCA, MPLS, RMPLS, SPCR, CPCR, and
UNIV for censoring rate of1/3 and TVPE of40% and60%. In the case whenp is
small (p = 100) in the absence of outliers in the response, PCA, MPLS, RMPLS
and SPCR perform relatively the same, and they outperform CPCR and UNIV. In
the case whenp is large (p ≥ 300) in the presence of outliers, we observe the same
result as in the case of no outliers.

The next two measures,ave(d2) and ave(d2.ind), are in terms of the mean
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Figure 2: Cox model:1/3 censored.MSE(β) for datasets with40% and60%
TVPE accounted by the first 3 PCs comparing PCA, MPLS, RMPLS, SPCR, CPCR,
and UNIV.
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squared error of the estimated survival function. Theave(d2) is defined as:

ave(d2) =
1

s

s∑
i=1

∑
t∈Ds

(S̄i(t)− ˆ̄Si(t))
2 (21)

where for theith simulation,t corresponds to the observed death time, and

S̄i(t) = S0(t)
exp(X̄(i)′β) (22)

and
ˆ̄Si(t) = Ŝ0(t)

exp(X̄(i)′β̂). (23)

Here, both the true and estimated survival is obtained from the average of the covari-
atesX̄ in theith simulation, denoted bȳX(i), andŜ0 is the Nelson-Aalen estimator
of the baseline survival function.

The next measure,ave(d2.ind), measures the mean squared error of survival
where the survival function is evaluated using the covariates corresponding to the
individuals, rather than the average of the covariates,

ave(d2.ind) =
1

s

1

N

s∑
i=1

N∑
n=1

∑
t∈Ds

(Sin(t)− Ŝin(t))2 (24)
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where for theith simulation,

Sin(t) = S0(t)
exp(Xn(i)′β) (25)

and
Ŝin(t) = Ŝ0(t)

exp(Xn(i)′β̂) (26)

whereXn(i) are the covariates corresponding to thenth individual in theith simu-
lation.

Figures 3 and 4 compare theave(d2) of survival for PCA, MPLS, RMPLS,
SPCR, CPCR, and UNIV for censoring rate of1/3 and1/2, respectively, and TVPE
of 40%, 50%, 60% and70%. In the case whenp is small (p = 100) in the absence
of outliers in the response, RMPLS performs slightly better than MPLS, and both
methods outperform PCA for low to moderate TVPE (40% and50%). SPCR yields
closeave(d2) to PCA, and all four methods RMPLS, MPLS, PCA and SPCR out-
perform both CPCR and UNIV. At high censoring rate of1/2, the performance of
all methods deteriorate because of the small effective sample size. However, the
pattern remains the same as in the case of1/3 censoring. This result is consistent
with the findings of Nguyen (2005). In the case whenp is large (p ≥ 300) in the
presence of outliers, RMPLS substantially outperforms all other methods. MPLS is
affected by outliers, since the method performs worse than PCA some of the times.
SPCR performs better than PCA. UNIV performs surprisingly well, better than
PCA in some instances. CPCR performs relatively worst among all the methods.

Figure 5 compares theave(d2.ind) of survival for PCA, MPLS, RMPLS, SPCR,
CPCR, and UNIV for censoring rate of1/3, and TVPE of40%, 50%, 60% and70%.
In the case whenp is small (p = 100) in the absence of outliers in the response,
RMPLS performs slightly worse than MPLS. Both methods outperform all other
methods for all TVPE. Again, similar to the results for the measureave(d2), SPCR
yields closeave(d2.ind) to PCA, and both methods perform better than CPCR.
UNIV performs worst among all the considered methods. In the case whenp is large
(p ≥ 300) in the presence of outliers, RMPLS substantially outperforms all other
methods. Again, MPLS is affected by outliers, since the method performs worse
than SPCR most of the times. Both SPCR and MPLS outperform PCA. UNIV
performs well, better than PCA in some instances. CPCR generally performs worst
among all the methods. The results for censoring rate of1/2 are similar to those
for censoring rate of1/3 (not shown), although the performance of the methods
deteriorate due to a high censoring rate.

The next two measures,ave(bias) andave(bias.ind) are in terms of bias of the
estimated survival function. Both measures of bias are calculated at the deciles
of the true survival function. Theave(bias) is evaluated using the average of the
covariates, and theave(bias.ind) is evaluated using the covariates corresponding
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Figure 3: Cox model:1/3 censored.ave(d2) of survival for datasets with40%,
50%, 60% and70% TVPE accounted by the first 3 PCs comparing PCA, MPLS,
RMPLS, SPCR, CPCR, and UNIV. Thex−axis denotes the number of genes,p,
and the y-axis denotesave(d2).
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Figure 4: Cox model:1/2 censored.ave(d2) of survival for datasets with40%,
50%, 60% and70% TVPE accounted by the first 3 PCs comparing PCA, MPLS,
RMPLS, SPCR, CPCR, and UNIV.
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Figure 5: Cox model:1/3 censored.ave(d2.ind) of survival for datasets with40%,
50%, 60% and70% TVPE accounted by the first 3 PCs comparing PCA, MPLS,
RMPLS, SPCR, CPCR, and UNIV. Thex−axis denotes the number of genes,p,
and the y-axis denotesave(d2.ind).
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to the individuals. We now describe these measures:

ave(bias) =
1

s

s∑
i=1

ˆ̄Si(tq)− S̄i(tq) (27)

whereq = 0.1, 0.2, . . . , 0.9. For theith simulation,tq = S−1
0

(
qexp(−X̄(i)′β)

)
corre-

spond to the deciles of the true survival function. In other words,S̄i(tq) = q. The

estimated survival iŝ̄Si(tq) =
(
Ŝ0(tq)

)exp(X̄(i)′β)

.

Theave(bias.ind) is defined as:

ave(bias.ind) =
1

s

1

N

s∑
i=1

N∑
n=1

Ŝin(tq)− Sin(tq) (28)

where for theith simulation andnth individual, tq = S−1
0

(
qexp(−Xn(i)′β)

)
so that

Sin(tq) = q, andŜin(tq) =
(
Ŝ0(tq)

)exp(Xn(i)′β)

.

Figure 6 compares theave(bias) of the estimated survival function for PCA,
MPLS, RMPLS, SPCR, CPCR and UNIV for censoring rate of1/3, p = 100, 500
and800, and TVPE of50%, 60% and70%. The results for the casesp = 300, 1000,
1200, 1400 and1600 are similar to the results forp = 500, and800, so we omit
these plots. Also, the results for the censoring rate of1/2 are not shown since they
are similar to the results for censoring rate of1/3. However, at high censoring rate
of 1/2, the performance of all methods deteriorate because of the small effective
sample size. RMPLS generally outperforms all other methods, including MPLS, for
small to medium deciles (q = 0.1, . . . , .5) in both cases whenp is small (p = 100) in
the absence of outliers in the response or whenp is large (p ≥ 300) in the presence
of outliers. For large deciles (q = .6, . . . , .9), there is no clear-cut winner among
the methods.

In the case whenp is small (p = 100) in the absence of outliers in the response,
both RMPLS and MPLS outperform PCA for all deciles (q = .1, . . . , .9). SPCR
and CPCR yield close estimates to PCA for the case of1/3 censoring, and UNIV
performs relatively worst. In the case whenp is large (p ≥ 300) in the presence of
outliers in the response, MPLS is affected by outliers, since the method performs
worse than PCA, SPCR, and UNIV some of the times.

Figure 7 compares theave(bias.ind) of the estimated survival function for PCA,
MPLS, RMPLS, SPCR, CPCR and UNIV for censoring rate of1/3, p = 100, 500
and800, and TVPE of50%, 60% and70%. Again, the results for the casesp =
300, 1000, 1200, 1400 andp = 1600 are similar to the results forp = 500 and800,
so we omit these plots. Also, the results for censoring rate of1/2 are not shown. In
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the case whenp is small (p = 100) in the absence of outliers in the response, RM-
PLS is comparable to MPLS. Both methods outperform all other methods, includ-
ing PCA, for all TVPE for small to medium deciles (q = 0.1, . . . , .5). Also, SPCR
and UNIV perform slightly better than PCA and CPCR. In the case whenp is large
(p ≥ 300) in the presence of outliers in the response, RMPLS outperforms all other
methods, including MPLS, forq = 0.1, . . . , .5. For large decilesq = 0.6, . . . , .9,
RMPLS, MPLS, SPCR and UNIV perform relatively the same. Furthermore, RM-
PLS, SPCR, and UNIV perform slightly better than PCA and CPCR for all deciles.

Figure 8 compares theMSE(β), ave(d2), andave(d2.ind) for methods coupled
with SIR (PCA and MPLS) and their un-SIR counterparts for censoring rate of
1/3 and TVPE of50% and70% using the baseline exponential survival in the Cox
model. SIR does not improve upon the performance of the dimension reduction
methods. The results are similar for TVPE of40% and60%, censoring rate of1/2,
and the two bias measures (ave(bias) andave(bias.ind)), so we omit these plots.

3.2 Scenario 2:K is Selected by Cross-Validation (CV)

In practice, the number of components is chosen by cross-validation, which leads
to differentK for different methods. We provide simulation results based on cross-
validation as a criterion to selectK. We employ a2−fold CV using the mini-
mization of the squared error of the estimated survival function, denoted byCV
(surv.error), for the simulated data to compare the different methods under the
Cox model. TheCV (surv.error) is defined as:

CV (surv.error) =
1

sM

s∑
i=1

M∑
m=1

∑
t∈Dm

[
ˆ̄S−m(t)− ˆ̄Sm(t)

]2

(29)

wherei = 1, . . . , s is the index for the simulation run,s = 5000 simulations,m =
1, . . . ,M is the index for the fold,M = 2, Dm is the set of death times in themth

fold, ˆ̄Sm denotes the estimated survival function for themth fold, and ˆ̄S−m denotes
the estimated survival function when themth fold is removed. In this setting, for
each simulation run, we use a50 : 50 split of the data into a training set and a test set.
Thus, the indexm also denotes the test set, and−m denotes the training set. Also,
the estimated survival functions are evaluated using the covariates correponding to
the individuals, i.e.,

ˆ̄Sm(t) =
1

Nm

Nm∑
n=1

Ŝm,n(t) (30)
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Figure 6: Cox model:1/3 censored.ave(bias) of survival is plotted againstq, the
deciles of the true survival function, for datasets with50%, 60% and70% TVPE
accounted by the first 3 PCs comparing PCA, MPLS, RMPLS, SPCR, CPCR, and
UNIV. The x−axis denotesq, the deciles of the true survival function, and the
y-axis denotesave(bias). The rows of the plots are for datasets with dimension
p = 100, 500, and800.
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Figure 7: Cox model:1/3 censored.ave(bias.ind) of survival is plotted againstq
for datasets with50%, 60% and70% TVPE accounted by the first 3 PCs comparing
PCA, MPLS, RMPLS, SPCR, CPCR, and UNIV. Thex−axis denotesq, the deciles
of the true survival function, and the y-axis denotesave(bias.ind). The rows of the
plots are for datasets with dimensionp = 100, 500, and800.
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Figure 8: Cox model:1/3 censored. MSE(β), ave(d2) and ave(d2.ind) for
datasets with50% and70% TVPE accounted by the first 3 PCs comparing PCA,
MPLS, PCA-SIR, and MPLS-SIR. Thex−axis denotes the number of genes,p.
The top row is the plot of theMSE(β), middle row isave(d2), and the bottom row
is ave(d2.ind).
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Table 1: Cox model:1/3 censored.K chosen by2−fold CV for the different
methods.

p 100 300 500 800 1000 1200 1400 1600
PCA 3 3 6 4 5 4 7 5

MPLS 1 2 1 2 2 1 2 2
RMPLS 4 3 2 4 4 2 2 2
CPCR 1 3 1 2 2 3 1 3
SPCR 1 4 4 5 5 2 1 2
UNIV 6 7 5 10 7 8 4 6

and

ˆ̄S−m(t) =
1

N−m

N−m∑
n=1

Ŝ−m,n(t) (31)

whereN. = 25 denotes the number of individuals either in test or training set,Ŝm,n

is the estimated survival function for thenth individual in the test set, and̂S−m,n

is the estimated survival function for thenth individual in the training set. Here,

Ŝm,n(t) = Ŝ0,m(t)
exp(X′

m,nβ̂m)
.

For each method, aCV (surv.error) is obtained for each value ofλ, which is
the tuning parameter for that method. Here,λ < min(Nm, N−m). In these simu-
lations, we letλ = 1, 2, . . . , 20. The optimalλ corresponds toK which minimizes
CV (surv.error). Table 1 shows theK chosen by2−fold CV for the different
methods using the minimization of theCV (surv.error) under the Cox model with
1/3 censoring and5000 simulations.

Once the CV is performed, we can useK with the simulated data as before, and
obtain the mean square error for theβ’s and the estimated survival function. Fig-
ure 9 compares theCV (surv.error), MSE(β), ave(d2) andave(d2.ind) among
PCA, MPLS, RMPLS, CPCR, SPCR and UNIV. RMPLS generally outperforms
other methods in terms ofCV (surv.error), ave(d2) andave(d2.ind) for both cases
when outliers are present and absent in the response. MPLS is affected by outliers,
since the method performs worse than PCA in terms ofave(d2) andave(d2.ind).
In terms ofMSE(β), PCA, MPLS, RMPLS, CPCR and SPCR perform relatively
the same, and they all outperform UNIV. The standard errors (not shown) based on
5000 simulation runs of the four measures for RMPLS are small in magnitude, and
are comparable to other methods. CPCR and UNIV have larger standard errors for
MSE(β) compared to other methods. Using CV, RMPLS is also better variant of
PLS than MPLS as in the case when the number of components,K, is fixed for all
the methods.
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Real datasets:We also apply Cross-validation (CV) to two real datasets. The
first dataset is the Diffuse Large-B-cell Lymphoma (DLBCL) data described in
Rosenwald et al. (2002), and Bair and Tibshirani (2004). There are240 patients,
7399 genes, and42.5% of the patient survival times are censored. The second
dataset is the Harvard lung carcinoma described in Bhattacharjee et al. (2001).
There are84 patients,12625 genes, and42.9% of the patient survival times are cen-
sored. Figure 10 shows the histograms of the survival times for the two datasets.
The survival times of the Harvard dataset are heavily left-skewed, with few large
observations which maybe outliers. We should observe that the survival times of
the Harvard dataset have longer tail than those of the DLBCL dataset.

For the DLBCL data, we used a9−fold CV with 25 samples in the test set, and
215 samples in the training set. For the Harvard data, we first screened out the
genes withp− val > 0.5 using UNIV in a Cox model to retain7189 genes. Then,
we used3−fold CV with 28 samples in the test set, and56 samples in the training
set. For both datasets, we repeat the CV 1000 times. Tables 2 and 3 show the min-
imized CV (surv.error) and the standard error of the 1000 repeated runs for the
various methods. RMPLS outperforms all other methods for the Harvard data, in
the presence of outliers in the response. Also, the method is comparable to MPLS
and other methods for the DLBCL data in the absence of outliers.

For the DLBCL and Harvard datasets, we also explored the similarity between
MPLS and RMPLS in the ranking of the significant genes based on the absolute
value of the estimated weights on the genes (AEW ), whereAEW is defined as,

AEW = |Wβ̂∗
Cox| (32)

whereW are the weights obtained from the dimension reduction step for MPLS or
RMPLS using the whole datasets, andβ̂∗

Cox = β̂Cox

se(β̂Cox)
. Table 4 shows the number

of top-ranked genes in common between MPLS and RMPLS out ofK considered
top-ranked genes for the two datasets using only the first component. We should
observe that MPLS and RMPLS select many genes that are in common. Since the
response of the Harvard dataset has outlying observations, the number of common
genes selected by the two methods is generally less than that of the DLBCL dataset
in the absence of outliers.

4 Conclusions and Discussion

In this paper, the simulation model of Nguyen and Rocke (2004) for gene expres-
sion data with censored response was adopted to assess the performance of several
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Table 2: Cox model: DLBCL data.K chosen by9−fold CV for the different
methods. Themin(CV (surv.error)) and the standard error of the 1000 repeated
runs are shown.

PCA MPLS RMPLS CPCR SPCR UNIV
K 7 1 1 2 1 11

CV.surv.error 0.1026 0.1074 0.1056 0.1014 0.1063 0.1221
se.surv.error 0.0336 0.0372 0.0354 0.0346 0.0353 0.0383

Table 3: Cox model: Harvard data.K chosen by3−fold CV for the different
methods. Themin(CV (surv.error)) and the standard error of the 1000 repeated
runs are shown.

PCA MPLS RMPLS CPCR SPCR UNIV
K 13 1 1 2 3 14

CV.surv.error 0.1210 0.1304 0.1124 0.1402 0.1473 0.1663
se.surv.error 0.06 0.0654 0.0305 0.0727 0.0822 0.0863

Table 4: Cox model: Number of top-ranked genes in common between MPLS
and RMPLS for DLBCL and Harvard datasets using the absolute of the estimated
weights for the genes. The first row shows the number of considered top-ranked
genes.

K top-ranked genes 25 50 100 250 500 1000
DLBCL 15 33 74 188 397 802

HARVARD 14 28 58 173 369 819
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dimension reduction methods using a two-stage procedure employing the Cox re-
gression model at the second stage. The dimension reduction methods considered
in the simulations are: PCA, MPLS, RMPLS, SIR, UNIV, SPCR, and CPCR. The
comparison of the different methods was based on five measures: 1)MSE(β), 2)
ave(d2), 3) ave(d2.ind), 4) ave(bias), and 5)ave(bias.ind). Based on the simula-
tion results, our conclusions are as follows.

Scenario 1:K is fixed
• In the absence of outliers in the response, PCA, MPLS, RMPLS and SPCR per-

form relatively the same in terms ofMSE(β), for all the considered TVPE (40%,
50%, 60%, and70%). Also, all four methods outperform CPCR and UNIV. In terms
of ave(d2) andave(d2.ind), RMPLS is comparable to MPLS, and both methods
substantially outperform other methods for low to moderate TVPE (40% and50%).
PCA and SPCR perform relatively the same, and both outperform CPCR. UNIV
performs worst among the methods. In terms ofave(bias) andave(bias.ind), RM-
PLS is comparable to MPLS for all deciles (q = .1, . . . , .9), and both RMPLS and
MPLS outperform other methods for small to medium deciles (q = .1, . . . , .5). For
large deciles (q = .6, . . . , .9), none of the methods dominates all others.
• In the presence of outliers in the response, PCA, MPLS, RMPLS and SPCR

perform relatively the same in terms ofMSE(β), and all four methods outperform
CPCR and UNIV. In terms ofave(d2) andave(d2.ind), RMPLS outperforms all
other methods. MPLS is affected by outliers in the response. SPCR generally out-
performs MPLS, and UNIV surprisingly performs well compared to PCA. CPCR
performs worst among the methods. In terms ofave(bias) andave(bias.ind), RM-
PLS outperforms all other methods, including MPLS, for small to medium deciles
(q = .1, . . . , .5).
• Methods coupled with SIR (PCA and MPLS) do not improve their un-SIR

counterparts based on the five measures.
• As the TVPE increases, all methods improve.

Scenario 2:K is selected by cross-validation
• RMPLS generally outperforms other methods in terms ofCV (surv.error),

ave(d2) andave(d2.ind) for both cases when outliers are present and absent in the
response.
• MPLS is affected by outliers in terms ofave(d2) andave(d2.ind).
• MPLS, RMPLS, PCA, CPCR and SPCR perform relatively the same in terms

of MSE(β), and they all outperform UNIV.

The covariance measure in the optimization criteria of PLS is influenced by out-
liers, and thus, the PLS method is sensitive to outliers. In this paper, we use the
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Spearman rank-based correlation, which is insensitive to outliers, in the optimiza-
tion criteria of PLS. The simulation results indicate that RMPLS is a better dimen-
sion reduction method than MPLS in this case. Both approaches are variants of
PLS that incorporate the censoring information.

When there are no outliers in the response, RMPLS yields similar results to
MPLS, and both methods are superior to PCA. In these simulations, the response is
generated as a function of the gene expressions to satisfy the proportional hazards
assumption in the Cox model. Since PCA does not take into account the response in
its construction of the components, the components selected for the Cox regression
model are not necessarily predictive of the response. On the other hand, MPLS and
RMPLS consider both response and predictors in their construction of the compo-
nents.

One surprising result is that CPCR does not perform well in terms of mean
squared error of the estimated coefficients for the genes nor in terms of mean
squared error of the estimated survival function. In the dimension reduction stage,
CPCR consists of two sequential steps: first use PCA to obtain all the PC’s, then
apply UNIV to pick outK top-ranked PC’s. In the first step of CPCR, since PCA is
used, the response is ignored. Thus, the PC’s selected in the second step of CPCR
do not necessarily give better prediction than methods that incorporate the response
such as MPLS or RMPLS. Furthermore, the PC’s selected for the final multivariate
Cox model are not necessarily the firstK PC’s, and thus, the TVPE of the selected
PC’s can be much less than that of the firstK PC’s.

There are some limitations to our simulation study. The regression model used
is the Cox model, which models the hazard rate or survival probability, and not the
actual survival times. An alternative is to use the Accelerated Failure Time (AFT)
model. Preliminary results (not shown) indicate that RMPLS outperforms MPLS
based on the five measures under the AFT model.

Extensions: In these simulations, the gene expression levelsxij are taken to be
xij = exp(x∗ij), where thex∗ij is composed of a linear combination ofd underlying
components, each normally distributed with a certain mean and variance, and an er-
ror component, normally distributed with a different mean and variance. We should
observe that the linear combination of thed underlying components is also normally
distributed, and thus,x∗ij is only composed of an underlying component and an er-
ror component. By havingd underlying components, we have to take into account
the weights for these components,rki, for k = 1, . . . , d, andi = 1, . . . , N . The
survival and censoring times depend on the gene expressions, which in turn depend
on therki. A poor choice of the weights would make some of the observed survival
timesTi = min(yi, ci) outliers. For example, if we takerki ∼ Exp(10), then the
response has outliers whenp = 1000 as seen in Figure 11. Figure 12 compares
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theMSE(β), ave(d2), ave(d2.ind), ave(bias) for p = 100, andave(bias.ind) for
p = 100, for the caserki ∼ Exp(10) of PCA, MPLS, RMPLS, SPCR, CPCR,
and UNIV for censoring rate of1/3. In terms of mean squared error of the esti-
mated survival function (ave(d2) andave(d2.ind)), RMPLS outperforms all other
methods, including MPLS. Also, RMPLS outperforms all other methods for small
to medium deciles (q = .1, . . . , .5) in terms of the bias of the estimated survival
function (ave(bias) andave(bias.ind)) in the casep = 100. Similar results were
obtained forp = 300, 500, 800, 1000, 1200, 1400 and1600. Also, a similar pattern
is observed ifrki ∼ Uniform(0, 0.5) or rki ∼ N(0, 0.252).

Furthermore, the magnitude of theβ’s, the coefficients for the genes, and hence,
the survival times, are controlled by the varianceσ2

π. In these simulations, we fix
σπ = 0.2, so that we have outliers in the response for large values ofp. However,
we can varyσπ as we increasep so that the survival times do not have outliers. The
results (not included in this paper) indicate that the performance of the dimension
reduction methods for large values ofp are similar to that in the casep = 100 in the
absence of outliers forrki ∼ Unif(−0.2, 0.2).
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Figure 9: Cox model:1/3 censored.K is chosen by CV.min(CV (surv.error)),
MSE(β), ave(d2), and ave(d2.ind) comparing PCA, MPLS, RMPLS, SPCR,
CPCR, and UNIV based on 5000 simulations.
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Figure 10: Histograms of the survival times for stanford and harvard lung cancer
datasets.
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Figure 12: Cox model:rki ∼ Exp(10), 1/3 censored. MSE(β), ave(d2),
ave(d2.ind), ave(bias) for p = 100, andave(bias.ind) for p = 100, for datasets
with 50%, and70% TVPE accounted by the first 3 PCs comparing PCA, MPLS,
RMPLS, SPCR, CPCR, and UNIV based on 5000 simulations. Left panel:50%
TVPE, right panel:70% TVPE.
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